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Compression fracture of unidirectional carbon 
fibre-reinforced plastics 

S. L. BAZHENOV* ,  V. V. KOZEY 
Institute of Chemical Physics, Kosygin St. 4, 117977 Moscow, USSR 

The effect of volume fraction and tensile strength of fibres, temperature and stress concentrators 
on the compression strength and fracture mode of unidirectional CFRP was studied. The cause of 
kinking is different for composites reinforced by low- (<  3 G Pa) and high-strength fibres. If fibre 
strength is high, the kink is initiated by composite splitting followed by fibre bend fracture in the 
tip of the split. In the case of low-strength fibres, kinking is initiated by compressive fracture of the 
fibres. The effect of stress concentrators on the CFRP compressive strength is described by linear 
fracture mechanics. In the presence of defects, fracture is a result of the emergence of splits near 
a hole. As the critical stress of splitting growth initiation reduces in proportion to the square root of 
the defect size, the Griffith criterion describes the composite compressive fracture. At elevated 
temperature, failure is caused by fibre buckling. The fracture band in this case is oriented 
perpendicular to the fibre direction. Carbon fibre compressive strength may be measured by the 
loop method. Bending a strand of carbon fibres glued to the elastic beam gives a fibre-controlled 
upper limit of the composite compressive strength. 

1. I n t r o d u c t i o n  
There are several different models describing the fail- 
ure of unidirectionally reinforced composites under 
compression load applied along the fibre direction. 
Historically, the first to appear was introduced by 
Dew and Gruntfest [1] and by Rabinovich [2], ac- 
cording to which, failure is a result of fibre buckling in 
a fashion analogous to the buckling of a column on an 
elastic foundation [1, 2]. Compressive strength, ~'o, in 
this model is described by the Rabinovich equation 
[2] 

~'o = 6 ~ / ( 1  - v ~ )  (1)  

where Vf and Gm are the fibre volume fraction and the 
matrix shear modulus. 

Over the last three decades a variety of papers has 
been devoted to the study of this fracture mode. How- 
ever, experimental investigations produced numerous 
results contradicting this model. (1)According to 
Equation 1 compressive strength should be equal to 
3-5 GPa if conventional epoxy resin is used as 
a matrix. However, in reality, the strength of carbon 
fibre-reinforced plastics (CFRP) does not exceed 
1.6-1.8 GPa [3-7]. (2) Composite compressive 
strength !s proportional to the fibre volume content, 
Vf [4], while in accordance with Equation 1 it is 
expected to be non-linear. (3) Strength depends on the 
fibre types. It decreases with increase in fibre elasticity 
modulus [5-7]. (4) A direct proportionality between 
compressive and shear strengths of CFRP is observed 
[6]. 

The discrepancy between theory and experiment led 
to the conclusion that failure is caused not by the fibre 
buckling, but by some other reason. According to 
Weaver and Williams [8] and Parry and Wronski [9] 
the failure may be a result of the composite longitud- 
inal splitting (delamination) and consequent buckling 
of the outer split layers. In glass fibre-reinforced plas- 
tics (GFRP) the proportionality between the compres- 
sive and shear strengths is the most characteristic 
feature of splitting [10]. Summarizing various litera- 
ture data Petker [6] has pointed out the same propor- 
tionality for CFRP. This proportionality indicates the 
important role of splitting on CFRP compressive fail- 
ure. On the contrary, the appearance of fractured 
samples does not confirm it. In CFRP splitting is 
observed only if the samples are tested without 
any guides preventing the specimen distortion and 
crushing of their butt-ends. Th e strength values 
( ~ 0.5 GPa) are two- to four-fold lower than in up- 
to-date test methods. As a rule, the failure of CFRP is 
a result of the appearance of so-called kinks (shear 
bands) [3, 4, 11-13] at some angle ( ~ 450) to the fibre 
axis. 

Another fundamental approach to the problem of 
compressive failure, according to which the composite 
strength is limited by the compressive strength of 
the fibres themselves, was proposed by Evins [11], 
DeFerran and Harris [12] and Sierakowski et al. [13]. 
A similar idea is that of a composite "shear" fracture 
mode. The kink appears at an angle of ~ 45 ~ to the 
load axis, i.e. close to the plane of the maximum shear 
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stresses. For this reason, failure of CFRP was con- 
sidered as "shear" and the cause of fracture was sup- 
posed to be shear fracture of the fibres [11-13]. 

Thus, numerous and sometimes contradictory frac- 
ture models of CFRP, i.e. "fibre buckling", "splitting", 
"kinking", "fibre fracture" and controlled by fibre 
strength "shear" mode, have been proposed. The only 
reliable result which is beyond doubt is that CFRP 
failure is the result of kinking. An important question 
is whether kinking is a separate fracture mode or it is 
a consequence of some another cause. For example, 
Argon considered kinking as a result of fibre buckling 
[15], initiated by some fibre oriented at some small 
angle to other fibres by analogy with dislocation slip- 
page in metals (bent fibre stimulates buckling of neigh- 
bour fibres). Kinking has also been supposed to be 
a consequence of fibre shear fracture 1-12, 13]. 

If the composite strength is close to the fibre 
strength multiplied by their fraction, Vf, it is evident 
that the fibre's fracture is the real cause of kinking. 
Owing to the small diameter of the fibres, measure- 
ment of their compressive strength is quite a complic- 
ated task. There are three different methods of com- 
pressive strength measurements. In the first, a single 
fibre or strand of fibres embedded in an epoxy block 
is compressed [16, 17]. The strengths of pitch- and 
rayon-based fibres (El = 250GPa) and of high 
modulus Tornel-50 fibres (El = 355 GPa) are evalu- 
ated as ~ 2.2 and 1.7 GPa, respectively [16]. These 
values are close to or slightly lower than the fibre 
tensile strength. Fibre compressive strength signific- 
antly decreases if the elasticity modulus exceeds 
350 GPa [16]. The compressive strength of superhigh 
modulus graphite fibres (Ef = 510 GPa) is estimated 
to be 1-1.1 GPa [17] which is almost half their tensile 
strength. 

Allen [18] proposed a recoil test based on the idea 
that the compressive stress at the moment of arrival of 
the shock wave to the end tabs after a tensioned fibre 
has been cut, is equal to the initial tensile stress. The 
recoil method was successfully used to measure com- 
pressive strength of aramid fibres. For high-strength 
AS4 fibres and high-modulus pitch-based P-55 fibres, 
this method gives 1.44 and 0.40 GPa, respectively. 
These values are approximately half those for the fibre 
compressive strength, ~ ,  estimated from the com- 
posite strength, or'c, in accordance with the mixture 
law cr~ _~ or'c/Vf as 2.7 [9] and 0.86 GPa [19], respect- 
ively. The possible cause of errors is the fibre bend 
fracture near the end tabs [18]. 

Oshawa et al. [20] measured the lengths of pieces of 
fibre embedded in a matrix after compression, and 
using Kelly and Tyson's equation [21] estimated the 
strength of PAN-based T-300 and M-40 fibres to be 
2.06 and 0.78 GPa. In accordance with the mixture 
law, the strengths of these fibres in the composite are 
2.7-2.9 GPa [7, 19] and 1.5 GPa (see Fig. 3 below), 
respectively. According to Bazhenov et al. [22] due to 
a matrix support effect, the compressive strength of 
organic aramid fibres in a composite may be higher 
than that of isolated fibres, but the increase in strength 
is equal to I~YmVm/Vf, where O" m and V m a r e  matrix 
strength and volume content respectively. An estima- 

tion of this value shows that in the case of CFRP 
composite with a fibre content ~ 60%, the effect may 
be neglected (whether the matrix support effect could 
be neglected in the case of compression of a single fibre 
embedded in a polymer matrix is not clear). Thus, the 
fibre strength values measured by different methods 
do not agree; the last two methods contradict the 
mixture law, and the problem of carbon fibre strength 
measurement has not been solved. 

In several papers an equality of compressive and 
tensile strength of CFRP based on T-300 and XAS 
fibres (intermediate strength fibres) was noted 
[7, 9, 23, 24]. As a result it was supposed that the fibre 
compressive and tensile strengths are equal [9]. Sim- 
ilarly, from the fact that the strength of a composite 
reinforced by ultra-high strength T-800, T-1000 and 
IM-6 fibres is significantly lower than in tension 
[7, 24, 25], it is usually assumed that the compressive 
strength of these fibres is lower than their tensile 
strength. 

2. Experimental procedure 
As a reinforcement, different PAN-based high- 
strength carbon fibres (T-800, AS-4, UKN-5000A, 
UKN-5000B, UKN-5000C) and high-modulus M-40 
and HM fibres were used. The tensile strength of 
UKN-5000 fibres increases in the sequence UKN- 
5000A < UKN-5000B < UKN-5000C (Table I). In 
order to investigate the effect of surface treatment, 
UKN-5000B fibres with different levels of surface 
treatment were used. As matrices, hot-setting EDT,10, 
EHD and EKT epoxy resins were used. EHD and 
EKT matrices have a higher rigidity and strength 
compared with conventional EDT-10 epoxy resin. 

The compressive strength of CFRP was measured 
by two methods: (1) by compression of cylindrical rods 
of 9 mm diameter and turned central parts of 5 mm 
diameter ("dog-bone" specimens, Fig. la), and (2) by 
compression of end-tabbed samples with rectangular 
cross-section (2.5 mm x 10 mm, Fig. lb). Dog-bone 
rods were loaded on butt-ends in the guides enabling 
distortion to be eliminated and splitting to be sup- 
pressed as far as possible. According to Puchkov et al. 

[10] this test allows the suppression of splitting of 
GFRP, to obtain strength values of the order of the 
composite shear modulus and to study GFRP behavi- 
our at fibre buckling. The end-tabbed rectangular 
specimens were similar to ITTRI specimens. These 
samples will be termed "dog-bone" and "ITTRI" 
specimens, respectively. 

TAB LE I Mechanical characteristics of fibres 

Fibre Diameter Modulus a Strength" 

UKN-5000A 8.0 235 2.40 
UKN-5000B 8.0 235 3.20 
UKN-5000C 8.0 24.5 4.20 
T-800 (Torayca) 5.1 300 5.60 
M-40 (Torayca) 6.0 400 3.80 
HM 8.0 480 1.60 

a In tension at 10 mm gauge length. 
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Rectangular (ITTRI) specimens were made by 
winding filament preimpregnated with resin on 
a special rectangular mandrel with subsequent press- 
ing up. The dog-bone specimens were obtained by 
pulling the matrix-impregnated thread of fibres into 
a cylindrical steel pipe of 9 mm i.d. After curing the 
matrix, the cylindrical rods were cut and subjected to 
turning. The fibre content was varied by controlling 
the fibre tension during winding of ITTRI specimens 
and by changing the amount of fibres pulled into the 
pipe in the case of dog-bone specimens. Each point 
was averaged after testing six samples. 

Apart from these two test methods compressive 
strength was measured by bending an elastic glass 
fibre-reinforced plastic (GFRP) beam with a thin 
strand of carbon fibres glued to its compressed surface 
(Fig. lc). The advantage of this method consists in the 
absence of any concentration of transverse and shear 
stresses in the strand, which may reduce the strength 
of the dog-bone and ITTRI samples [26, 27]. As a 
result, longitudinal splitting of the strands was sup- 
pressed. The beam was tested by three- and four-point 
bending. The GFRP beam width and thickness were 
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Figure 1 Test specimens. (a) "Dog-bone", (b) ITTRI, (c) three-point 
bending of a strand, (d) four-point bending of a strand glued to both 
tensioned and compressed surfaces of the beam, (e) the loop method, 
t and l are the loop transverse and longitudinal sizes. 

10 and 4 mm, respectively. In order to prevent the 
strand buckling, it was covered with a thin (0.1 mm) 
layer of epoxy resin. The strand thickness was about 
20- to 25-fold lower than the beam thickness. 

In three-point beam bending the critical radius of 
curvature of the strand was determined by: 
(1) measuring the deflection of the beam centre using 
the displacement pickup; (2) measuring the critical 
load at strand fracture moment; and (3)directly 
measuring the radius of curvature using the mould 
and templates. 

In the first two cases the critical curvature radius, 
R*, was determined according to [27] 

R* = L 2 / 1 2  W (2) 

R* = 3 PL /Ec  bh 3 (3) 

where W and L are the deflection and span of the 
beam corrected with regard for sliding from supports 
[27], P is the critical load, b and h are the width and 
thickness of the beam, Ec is the elastic modulus of the 
beam. 

In order to investigate the relationship between the 
fibre compressive and tensile strengths directly, 
strands were glued upon both tensioned and com- 
pressed surfaces of the beam (Fig. id). This enabled us 
to measure simultaneously tensile and compressive 
strengths of the strand by the same method (four-point 
bending). The moment of strand fracture was deter- 
mined with the help of a long focal length optical 
microscope ( x 7). Strand fracture was followed by an 
acoustic "click". 

For four-point bending the strand curvature was 
determined from the critical load, P 

R* = 6 P A / E b  bh 3 (4) 



where A is the distance between the outer and inner 
rolls. 

The fibre strength in the strand was calculated from 

s = Ef8* --- Efh/2R* (5) 

where Ef is the fibre elastic modulus. 
Fibre compressive strength was additionallY meas- 

ured by the loop method in which both ends of the 
fibre were fixed precisely upon one axis. The loop was 
immersed into glycerin, and its longitudinal and trans- 
verse sizes (Fig. le) were measured by using an optical 
microscope. The maximum stress occurring at the 
loop tip is determined by radius of curvature of the 
fibre. In an elastic fibre the radius of curvature is 
proportional to the loop sizes [28]. This allows calcu- 
lation of the fibre strength from the critical longitud- 
inal size of the loop without direct determination of 
the radius of curvature. Using the theoretical results of 
Sinclair [283, the fibre strength may be found from 

cr~ = 1.43 df Ef/l~ (6) 

where df is the fibre diameter, l~ is the longitudinal size 
of the loop at which the longitudinal/transverse size 
ratio, l/t, falls below 1.34. The fibre elastic modulus 
under compression was assumed to be equal to its 
tensile modulus. Results of the loop tests were aver- 
aged after examining five or six samples. 

The composite shear strength was measured by 
three-point short-beam shear (ILLS) test at the span 
to thickness ratio = 5. To check the accuracy of the 
determined values, shear strength was also measured 
by torsion of unidirectional thin-walled tubes. A span 
to thickness ratio of 5 was chosen to provide close 
values of shear strengths determined by both methods. 
Fibre tensile strength was measured by testing a single 
fibre of 10 mm gauge length. 

For temperature investigations, the dog-bone speci- 
mens were used. ITTRI specimens with circular holes 
were tested to investigate CFRP notch sensitivity. 
Shear modulus was measured using a torsion pendu- 
lum apparatus. 
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Figure 2 Compressive strength plotted against carbon fibre volume 
content,/If. (1) ( �9 ) T-800/EKT, dog-bone, ( & ) T-800/EKT, ITTRI, 
(V) UKN-5000C/EKT, ITTRI. (2) (11) UKN-5000B/EKT, dog- 
bone, ([]) UKN-5000B/EKT, ITTRI. (3) (x) UKN-5000B/EDT, 
surface untreated fibres. (4) ( � 9  HM/EKT, dog-bone, (�9 ITTRI. 

However, sensitivity to the test method is typical for 
fracture modes controlled by the composite transverse 
and shear properties [10]. 

The strength of a composite reinforced by high- 
modulus fibres is much lower (Fig. 2). If one supposes 
that the composite strength is described by the mix- 
ture law (Equation 7), by extrapolation of the high 
modulus/EDT strength to Vf = 100%, high-modulus 
fibre strength is estimated as cf = 700 MPa. 

~ ' c  = V f o ' f  -~- V m O "  m (7) 

where ~m and Vm are the matrix strength and volume 
fraction. 

Fig. 3 shows that the composite compressive 
strength, ~'c, is directly proportional to the shear 
strength, % 

! 
~ = A zr (8) 

where A = 14.5. 
Equation 8 is valid irrespective of the manner in 

which the shear strength was varied (using various 

3. Results 
3.1. Effects of fibre content and shear strength 
Fig. 2 shows CFRP compressive strength plotted 
against carbon fibre volume content, Ve. The strength 
of composites reinforced by surface-treated fibres is 
directly proportional to the fibre content, Vf. In the 
case of untreated fibres, the strength asymptotically 
approaches its limiting value at high Vf. These results 
are completely in accordance with Hancox's data [4]. 
An increase in the fibre's tensile strength leads to 
a certain, although not very significant, increase in 
compressive strength of the dog-bone and ITTRI 
specimens. For example, the strength of a composite 
reinforced by super-strong T-800 fibres is only 

10% higher than in the case of UKN-5000B fibres. 
The strength difference of the dog-bone and ITTRI 
specimens may be neglected. Nevertheless, if the rect- 
angular specimens without end tabs were used, the 
strength values were half these values. Thus the 
strength values are quite sensitive to the test method. 
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Figure 3 CFRP compression strength, or' c (dog-bone samples) plot- 
ted against shear strength, %. ([]) UKN-5000B/EKT, surface un- 
treated fibres, ITTRI, ( I )  UKN-5000B/EDT, ITTRI, surface un- 
treated fibres, (O) M-40/EKT, ITTRI, ( � 9  UKN-5000B/EDT, 
ITTRI, (V) UKN-5000A/EDT, (A) UKN-5000B/EKT, ITTRI, 
( � 9  UKN-5000B/EHD, dog-bone specimens, (V) UKN- 
5000C/EHD, dog-bone specimens, (x) T-800/EKT, ITTRI, (l i )  
UKN-5000C/EKT, dog-bone specimens, ( + )  T-800/EHD, dog- 
bone specimens. 
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matrices, fibres, different surface treatment, varying 
porosity, etc.). Compressive strength of CFRP based 
on high-strength EKT and EHD matrices is approx- 
imately 20% higher compared with the conventional 
EDT-10 matrix. Thus to obtain a high composite 
compressive strength, rigid matrices allowing high 
shear characteristics to be attained are needed. 

3.2. Compressive strength of carbon fibres 
3.2.1. Strand bending 
Table II lists the results of different fibre strength 
measurements in strands. Fibre compressive strength 
depends neither on the strength determination 
method (via beam deflection, critical load or direct 
measurement of the curvature) nor on the test 
methods (three- or four-point bending). The mean 
compressive strength is equal to 3.9_ 0.5 GPa for 
UKN-5000B, 4.6 _ 0.3 GPa for UKN-5000C, 
5.8 + 0.5 GPa for T-800 and 3.7 + 0.4 GPa for M-40 
fibres. 

Two results are worth noting. First is the independ- 
ence of strength on the matrix type (in the case of 
ITTRI and dog-bone specimens it is matrix sensitive). 
This may be explained by composite failure due to 
fracture of the fibres themselves. The second is the 
closeness of the strand compressive strength to its 
tensile strength (in the case of UKN-5000B and car- 
bon fibres, compressive strength is even slightly 
higher). Compressive strength is close to tensile strength 
not only for intermediate strength (UKN-5000B) 
fibres but also for high-strength (UKN-5000C and 
T-800) and for high-modulus M-40 fibres. Further 
increase in fibre modulus (high-modulus fibres) leads 
to a reduction in compressive strength (0.8 ___ 0.1 GPa) 
with respect to tensile strength (1.4 GPa). Fibre tensile 
strength was measured on 10 mm gauge length while 
compressive strength in a composite corresponds to 
an ineffective length [21] which is estimated to be 
,-~ 2-4 mm. As a consequence, at beam bending the 

fibre strength corresponds to a shorter gauge length 
and this may be the reason why the compressive 
strength of UKN fibres is slightly higher than in 
tension. 

To compare the fibre tensile and compressive 
strengths on the same gauge length, strands were 
tested by four-point bending with the strands glued 
both upon the compressed and tensioned surfaces of 
a beam (Fig. ld). A simultaneous fracture of the 
strands on both surfaces of the beam was often regis- 
tered. This occurred in 30% of the cases for T-800 
strands and in 70% for UKN-5000C and M-40 fibres 
strands. In the remaining cases, random fracture of the 
strands was initially observed on the compressed or 
the tensioned surface of a beam. Thus, the fibre critical 
elongation at compression is equal to its elongation at 
tension (UKN-5000C, T-800, M-40). If the non-linear 
behaviour of a fibre at compression [29] is not taken 
into account, tensile and compregsive strengths could 
be considered to be equal. 

The results for high-modulus fibres (El = 480 GPa) 
are quite different. Compressive and tensile strengths 
of these fibres are not equal, the compressive strength 
being half the tensile strength. The compressive 
strength of high-modulus fibres in the strand is equal 
to 0.8 _ 0.1 GPa. This is in agreement with the value 
obtained in accordance with the mixture law 
(0.7 GPa). Hence the failure of ITTRI and dog-bone 
specimens is controlled by the high-modulus fibre 
strength. 

3.2.2. Loop method 
The non-linear behaviour of aramid fibres in a loop 
has been used to evaluate their compressive strength 
[30]. This method has been used by Jones and 
Johnson [29] to measure the tensile strength of high- 
strength carbon fibres at very short gauge length. 
Additionally, they found that the behaviour of high- 
modulus fibres in a loop is non-linear (linear for high- 
strength fibres). Non-linearity is connected with the 

T A B L E  I I  Compress ive  s t rength  of c a rbon  fibres in a s t rand  

C o m p o s i t e  Test  
m e t h o d  

Fibre  compress ive  s t rength  (GPa)  

Deflect ion Cri t ica l  load  Curva tu re  M e a n  

Tensile 

s t rength  

(GPa)  

U K N  B / E K T  Three-po in t  
U K N  B / E D T  Three-po in t  

U K N  C / E D T  Three-po in t  

U K N  C / E K T  Three -po in t  

U K N  C / E H D  Three -po in t  

U K N  C / E D T  F o u r - p o i n t  

T - 8 0 0 / E D T  Three-po in t  

T - 8 0 0 / E K T  Three-po in t  

T - 8 0 0 / E H D  Three-po in t  

T - 8 0 0 / E D T  Four -po in t  

M - 4 0 / E K T  Three-po in t  
M - 4 0 / E D T  Three-po in t  
M - 4 0 / E K T  Four-poi r i t  
H M / E D T  Three -po in t  

3.5-3.8 3.5-3.8 3.6 3.6 - 

4.0-4.4 4.4-4.5 - 4.3 - 
4.5-4.8 4.5-4.8 4.6 4.7 - 

4.4-4.5 4.4-4.5 4.5 4.5 - 

4.5-5.0 4.5-5.0 - 4.9 - 
- 4.4-5.0 4.3-4.6 4.6 4.5-4.9 a 

5.3-5.8 5.3-5.8 5.8-6.4 5.7 

5.5-6.1 - 5.9 5.9 - 

6.0-6.5 5.8 6.0 - 
- - 5.6-5.8 5.7 5.6-5.8 a 

3.9 3.7-4.0 3.7 3.8 - 
3.3 - - 3.3 - 

- 3.6-4.2 4.2-4.3 4.1 3.7-4.2" 
0.70-0.85 - 0.8 1.3-1.5 b 

In a g lued s t rand.  
S t rand  was  no t  glued. 
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steadily progressing growth of fracture disturbances 
from the fibre compressed side to its centre. 

In the present paper, the loop test was used to 
measure compressive strengths of carbon fibres. For 
comparison, glass fibres which have absolutely elastic 
deformation were also tested (Fig. 4a). UKN-5000A 
fibres in a loop also produce an elastic deformation 
diagram up to failure. The results for UKN-5000B 
fibres are shown in Fig. 4b. It is difficult to conclude 
whether or not the behaviour of these fibres is elastic. 
At the same time the high-strength T-800 and high- 
modulus M-40 fibres exhibit a non-linearity, suggest- 
ing an inelastic character of deformation (Fig. 4c and 
d). Thus some carbon fibres have a non-linear behavi- 
our in a loop and others do not. Non-linear behaviour 
is typical not only for high-modulus fibres, as was 
shown by Jones and Johnson [29], but also for new 
superhigh-strength T-800 fibres as well. The com- 
pletely elastic deformation diagram of glass fibres 
proves that non-linearity is not a result of experi- 
mental error. Fibre compressive strength was cal- 
culated from Equation 6 to be 4.4_+ 0 .6GPa for 
T-800 and 3.5 _+ 0.3 GPa for M-40 fibres. These values 
are considered to be the fibre compressive strengths 
(Table III). The strength of M-40 fibres is in agreement 
with that in strands, while T-800 fibre strength in 
loops (4.4 GPa) is lower than in strands (5.8 GPa). 
Unfortunately, we failed to apply the above method to 
high-modulus fibres ( E f  = 480 GPa) owing to their 
extreme brittleness. 

For the glass fibres the ratio t/l ,  where t and I are the 
loop transverse and longitudinal sizes, is precisely 
equal to 1.34 during tightening of a loop, while for the 
carbon fibres significant scatter in t / l  is observed. This 
is presumably related to the slightly non-ideal cylin- 
drical shape of a fibre and rigid "dirt" upon its surface 
which is detected using a scanning electron micro- 
scope (SEM). 

3.3.  T h e  e f fec t  o f  c i r c u l a r  h o l e s  
Fig. 5 shows CFRP compressive strength plotted 
against circular hole diameter, D. The relative strength 
decrease is described by the same curve at 40 and 
60 vol % content. Fig. 6 shows that this dependence 
represents a straight line in double logarithmic co- 
ordinates. Hence strength is described by a power 
function 

o'c = K / D  q (9) 

where K is a constant and q = 0.38 +_ 0.04 is the 
power index, which is close to 1/2. Consequently, the 
linear fracture mechanics describes the effect of stress 
concentrators on the CFRP compressive strength (it 
cannot be used for tension). This is quite unusual, as in 
traditional materials the former may be used for ten- 
sion but not for compression. To describe the effect of 
defects for a multilayered CFRP, Guynn and Braydley 
[31] modified fracture mechanics using the point 
stress criterion developed by Waddoups et  al. for 
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T A B L E  I I I  Fibre strength in a loop 

Fibre le (mm)" 1r (ram) b cr~ (GPa) 

T-800 0.22 0.45 4.4 _ 0.6 
M-40 0.65 0.9 3.5 _ 0.3 

"Fracture. 
b Inelastic deformation. 
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Figure 5 Compressive strength plotted against CFRP circular hole 
diameter; w = 10 mm is the sample width. (�9 UKN-5000B/EKT, 
Cr'o = 1.30 GPa, Vr = 60%, ITTRI. ( 0 )  UKN-5000B/EDT, 
Cr'o = 0.75 GPa, Vf = 40%. ITTRI specimens. 
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Figure 6 Compressive strength plotted against the hole diameter, 
D, in double logarithmic coordinates. 

composites under tensile load [32]. For  a unidirec- 
tional composite, modification of the linear fracture 
mechanics is not necessary. 

The proportionality between the compressive and 
shear strengths, as well as the applicability of linear 
fracture mechanics to compression, may be explained 
if one assumes that a kink develops immediately after 
the emergence of the longitudinal crack. In samples 
with a hole at some critical compressive stress near the 
hole, four longitudinal splits appear (Fig. 7a). Accord- 
ing to several reports [33-35], at tension the critical 
stress at which splits appear near a hole coincides with 
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Figure 7 (a) Splitting near a circular hole, (b-e) typical appearance 
of fractured samples, 13 is the kink angle. 

that for splitting near a crack. Splitting stress in both 
cases is described by linear fracture mechanics. In 
shear lag approximation, the critical stress at com- 
pression coincides with that for local splitting at ten- 
sion. Hence compressive strength may be described 
by [35] 

O'e = (EcGI,c/D) 1/2 (10) 

where Er is the composite elasticity modulus, G,~ is 
mode II fracture toughness and D is the diameter of 
the hole. 

Observation of the fracture process revealed that 
the emergence of splits near a hole does lead to kink- 
ing. Typical appearances of fractured samples are 
shown in Fig. 7b-e. Sometimes emergence of kinks 
was observed in the vicinity of the hole, while no 
visible splitting was observed. We suppose that in this 
case the split was so short that it was not detected. 
A kink originating by a very short split was observed 
by Rhodes et al. [36]. 

3.4. Effect of temperature 
Fig. 8 shows the variation of compression strength 
with temperature. Near the matrix glass transition 
temperature, Tg, strength sharply decreases due to 
matrix softening, which is illustrated by the temper- 
ature dependence of composite shear modulus (curve 
2). The dependencies of compressive strength and 
shear modulus are similar. 

At T > Tg the dependence of strength on fibre con- 
tent, Vy, is not linear. Fig. 9 shows that this depend- 
ence becomes linear in coordinates o ' ~ -  (1 - Vf)-1. 
Consequently, the strength is proportional to the com- 
posite shear modulus in accordance with Equation 1. 
The coefficient of proportionality for the straight line 
in Fig. 9 is equal to 104 MPa. This value is quite close 
to the matrix shear modulus Gm ~ 120 MPa. By 
extrapolation of the straight line to Vf = 0 one obtains 
~c = 1 2 0 _  15 MPa. This value is also close to G m. 

Thus Equation 1 quite accurately describes CFRP 
compressive strength on Vf at T > Tg. Hence one can 
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Figure 8 UKN-5000B/EDT: (1) compressive strength, c~'c, and (2) 
modulus of elasticity at torsion, Gc plotted against temperature; (1) 
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Figure9 Compressive strength at T= ll0~ plotted against 
(1 - Vf) -1. EDT-10 matrix, Tg = 90~ (see Fig. 8). 

conclude that the failure mode at elevated temper- 
atures is fibre buckling. 

3.5. Frac ture  
At room temperature, irrespective of the type of fibre 
and matrix, failure is a result of the appearance of 
a kink band (Figs 10, i l a  and b). The fracture of the 
dog-bone specimens often follows splitting of speci- 
men's cylindrical working part (Fig. 12). Single or 
multiple kinks appear in the vicinity of the compress- 
ing surface (sample facet). ITTRI samples often frac- 
ture in the vicinity of end tabs. 

In rectangular ITTRI samples the kink can propa- 
gate both in front and side planes (Fig. 7b and c). It 
was found that the kink propagation angle [3 is equal 
for "front" and "side" planes. Within an accuracy of 
+ 4 ~ [3 ( = 39 __ 4 ~ for dog-bone specimens) does not 

depend on the type and strength of fibres (UKN- 
5000A, B, C, T-800, M-40, HM) and matrix (EDT, 

P 

Figure 10 Kink, Lc = kink length, ~t = 29. 

EKT, EHD). Values of 13 were the same for samples 
with and without stress concentrators. In the case of 
the dog-bone specimens, 13 = 33 + 4 ~ which is some- 
what lower than the value obtained for ITTRI speci- 
mens. The reason why [3 depends on the test method is 
not clear. Hahn [37] predicted the dependence of the 
kink length and [3 on the fibre type. The kink length, 
Lc (Fig. 10), significantly varies (from 30-60 ~tm), and 
no dependence of Lc on the fibre and matrix proper- 
ties at room temperature was noticed. However, an 
increase in temperature was followed by two-fold 
growth in fractured piece lengths at T > Tg. This 
indicates that the kink length does depend on matrix 
properties but the dependence is very weak. The kink 
length and angle [3 ( ~ 35 ~ in a strand was close to 
these in ITTRI samples. Fig. 1 ld shows that the fibre 
fracture in the kink tip is followed by fibre bend 
fracture. 

Each kink band consists of one or several parallel 
step-like "elementary kinks" of fixed length 
(30-60 pm). Broken fibre parts in the neighbour ele- 
mentary kinks in the same band are parallel (Fig. 1 lc). 

According to WoUa and Goree [34], fractographic 
analysis of the fracture surface of individual fibres in 
a kink allows one to conclude whether the final step of 
a failure is a result of tension, compression or bending 
of the fibres. If parallel fracture lines are detected upon 
the facets of single fibres in a kink, it can be concluded 
[38] that finally a fracture of all types of fibre in a kink 
is caused by their bending. Sometimes two adjacent 
kinks which propagated not parallel but in different 
directions were also observed. 
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Figure 11 (a, b) Fractured dog-bone specimens, (c) kinks steps 
("elementary kinks"), magnified area shown by the arrow in (b), 
(d) kink tip in a strand, (e) sample fractured at T= llO~ 

ing is stimulated not by splitting but by high-modulus 
fibre bearing-capacity loss. 

- - \  / 

\ 
Figure 12 Schematic fracture of dog-bone specimens. 

The fracture of a composite reinforced by high- 
modulus fibres has two peculiarities. The first is the 
fracture in a working part, both in dog-bone and 
ITTRI  specimens, and the absence of any longitudinal 
splitting. The second is the equality of fibre strength in 
strands and rods. This indicates that in this case kink- 
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3.6. Fracture at e levated temperature 
Near the matrix Tg the fracture mode changes, to- 
gether with the angle, 13, between the fibre axis and the 
fracture band. The angle 13 at T > Tg is close to 0 ~ 
(Figs l l e  and 13) and the fracture band propagates 
practically perpendicular to the fibre axis. This band is 
a result of a wave of local fibre buckling. The length of 
broken fibres in this band is about 80-100 Ixm, which 
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Figure 13 Angle between the kink planes in rectangular cross- 
section specimens plotted against temperature, T. 



is approximately the double kink length at room tem- 
perature. At room temperature, fibre bend with re- 
spect to the kink plane is antisymmetrical (Figs 10 and 
1 lc) while above Tg the fibre bend in it is symmetrical 
(Fig. l le). For this reason, Bazhenov et al. [22] 
termed the fracture band at T > T, a "symmetrical 
kink". Note that [3 is close to 0 ~ but is not exactly 
equal to 0. The fracture band at T > Tg resembles 
a spiral shape with 13 = 5~ ~ 

4. D i s c u s s i o n  
Nearly a two-fold increase in the tensile strength 
of fibres results in a minor (~ 10%) increase in the 
rods compressive strength (UKN-5000A/EDT- 
T-800/EDT). The present data suggest that in this 
sequence the composite compressive strength is lim- 
ited not by the fibres properties but is a consequence 
of the emergence of the first longitudinal split along 
the loading direction. The stress at which splitting 
starts is determined by shear strength. As a result, 
compressive strength is proportional to shear 
strength. In samples with a hole, strength is deter- 
mined by stress at which longitudinal splits appear 
near the hole. Fracture is a consequence of the appear- 
ance of these splits and the strength is described by 
linear fracture mechanics. 

Kink initiation by longitudinal splitting may 
be explained by fibre bending in the tip of the split 
(Fig. 14a) and by propagation of the split not exactly 
along the fibres but across some of them. If several 
neighbour fibres in the crack tip are fractured, an 
unstable growth of the kink may start due to concen- 
tration of bending stress and the "domino" effect when 
the fracture of one fibre provokes the fracture of its 
neighbours. 

Fibre bending in the tip of a crack oriented trans- 
versely to the fibre direction under tension was invest- 
igated theoretically by Kobelev [39]. Theoretical 
equations of elasticity are reversible to load sign 
change and Kobelev's results [39] may also be applied 
to compression. In the case of splitting under com- 
pression, the cause of fibre bending is presumably 
quite different. Near a hole the longitudinal compres- 
sive stress is zero on one side of the split and equal to 
external compressive stress on the opposite side. As 
a result, growth of the split near a hole is accompanied 
by shear of the crack on opposite sides. As the split 
surface is quite rough, cracking leads to transverse 
displacement of the split sides and to bending of bridg- 
ing fibres in its tip (Fig. 14a). Of course in the case of 
samples without a stress concentrator, shear of the 
opposite sides of the split is not so high. Nevertheless, 
in this case, external stress is much higher and even 
slight fibre bending in the split tip stimulates fibre 
fracture. 

The compressive strengths of UKN and M-40 fibres 
are equal to their tensile strengths. This confirms the 
Reinolds and Sharp model [40], according to which 
carbon fibre failure is initiated by shear in misoriented 
graphite crystallites. On the contrary, high-modulus 
fibre results contradict this model. 

P 

(a) P 

(b) 

I p 

t P 

IIIIII 
-llIlII 

III I!1 
I P 

Figure 14 Kinking model. (a) Initiation of a kink near the tip of 
a longitudinal split: (1) split, (2) bent fibres in the split tip. (b) 
Initiation of a "symmetrical kink" by fibre buckling at T > Tg. 

The difference in T-800 fibre strength values meas- 
ured by the loop method and by beam bending should 
be noted. This difference may result from non- 
Hookean behaviour of the fibres in compression [29] 
due to which in bending the strength may be over- 
estimated (Equation 5). Consequently, strand bend 
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gives an upper limit of the fibre strength. On the 
contrary, the recoil method and the method used by 
Oshama et  al. [20] give underestimated values. 
More reliable methods seem to be the testing of 
a fibre embedded in matrix and the loop test. Of 
course these methods also have essential disadvan- 
tages and are not precise. The strength of an embed- 
ded fibre may be overestimated due to the matrix 
support effect [22]. In loops, strength may also be 
overestimated due to non-uniform distribution of 
stress over the fibre cross-section and a decrease in 
compressive stresses to the fibre centre. For example, 
in the case of aramid fibres, these methods give 1.5-2- 
fold overestimation of fibre strength. Of course, in the 
case of carbon fibres due to their much higher fibre 
strength, the error is supposed to be less. Additionally 
these tests may also give underestimated strength 
values. According to Hawthorne and Teghtsoonian 
[16] fibre fracture begins with the appearance of 
round cracks on the surface of the fibre. Further load- 
ing of an embedded fibre produced a gradual coarse- 
ning of the cracks until eventually they developed into 
a distinct shear of the fibre ends past each other. 
Hence, it is not clear at which moment the fibre load- 
bearing capacity is lost, and if the fibre strength is 
calculated from the strain at which first fracture event 
starts, the strength may be partly underestimated. 
We suppose that for carbon fibres errors leading to 
strength overestimation, on the one hand, and to its 
underestimation, on the other, may partly compensate 
each other. Nevertheless, precise and reliable measure- 
ment of fibre compressive strength still remains 
a problem. 

The strand strength does not depend on the matrix 
properties. Consequently, it does not correlate with 
shear strength and failure is caused not by splitting 
but by a compressive fracture of the fibres. 

Fig. 15 shows the correlation between fibre tensile 
and compressive strengths. For high-modulus fibres, 
compressive strength is lower than tensile strength. 
The strengths of intermediate and high-strength fibres 
(UKN-5000A, B and C, M-40) are close. In super- 
strong T-800 fibres, some decrease in compressive 
strength compared with tensile strength might be 
noted. 

Fig. 16 shows the dependence of CFRP compres- 
sive strength on fibre strength. In the case of low- 
strength high-modulus and UKN-5000A fibres, com- 
posite strength is described by the mixture law 
cr'c = Vecr~ (Equation 7). With an increase in fibre 
strength, the composite strength remains practically 
constant due to composite splitting. In this case com- 
posite strength is determined by matrix properties and 
the fibre strength does not affect composite properties. 
As a result, composite strength values are essentially 
lower than those predicted by the mixture law. Note 
that the strength of high-modulus M-40 fibre-rein- 
forced composite is not described by the dependence 
applicable for other composites. This is explained by 
the lower adhesion of high-modulus fibres to the 
epoxy matrix and the lower shear properties of the 
composite. Thus, at some fibre strength (Fig. 16) the 
composite failure mode is changed. The fibre strength 
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Figure 15 Correlation between fibre tensile and compressive 
strength. (O) High-modulus fibre, ( + ) UKN-5000A, (0)  UKN- 
5000B, ([3) M40, (x) UKN-5000C, (O) T-800. 
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Figure 16 Dependence of CFRP compressive strength on fibre 
compressive strength. (O) High-modulus fibre, ( + ) UKN-5000A, 
(0)  UKN-5000B, (r q) M40, (x) UKN-5000C, (�9 T-800. 

at which the fracture mode changes may be roughly 
evaluated from the mixture law. A typical value of 
CFRP compressive strength is equal to 1.4-1.8 GPa at 
~ 60 vol % fibre content [7]. Consequently, the frac- 

ture mode changes at fibre strength approximately 
equal 2.5-3 GPa. At low fibre strength, the composite 
failure mode may be termed "fibre fracture-induced 
kinking" and at high fibre strength "split-induced 
kinking". 

In both cases, kinking is not connected with fibre 
buckling, which takes place only at elevated tem- 
perature when the matrix elasticity is very low 
(Equation 1). There are three cases when failure mode 
is definitely fibre buckling. The first is failure of dog- 
bone specimens of glass fibre-reinforced plastic when 
sample splitting is suppressed [10]. The crack in this 
case propagates perpendicular to the fibres. The sec- 
ond case is failure of organic fibre-reinforced plastic at 
T > Tg. The fracture band in this case also propagates 
practically perpendicular to the fibres [223. The third 
case, fracture of CFRP at T >  Tg, is analogous to 
that of aramid fibre-reinforced plastic and [3 ~ 0 ~ 
Thus propagation of the fracture band perpendicular 
to fibres and appearance of "symmetrical kink" (Figs 



11e and 14b) was observed in all three cases when the 
cause of failure was fibre buckling. 

According to Bazhenov et al. [22], at room temper- 
ature, kinking of aramid FRP is caused by fibre yield 
fracture. In CFRP, kinking is caused either by fibre 
fracture or by composite splitting. Both in OFRP  and 
CFRP kinking was never connected with fibre buck- 
ling. We suppose that this is not a coincidence. This 
supposition is confirmed by analysis of the theoret- 
ical results of Budiansky [41]. He considered 
a cooperative fibre buckling wave at an angle, [3, to the 
load direction [41] and obtained the following equa- 
tion for the critical stress 

cy'~ = G~ + Ettan2~ (11) 

where G~ is the elastic shear modulus of the composite, 
and E t is transverse modulus. 

Strength is minimum at 13 = 0 ~ Consequently, at 
fibre buckling, a fracture band propagates perpen- 
dicular to the load direction. The second conclusion is 
that kinking is not connected with fibre buckling and, 
consequently, it is connected with some other causes. 

The transition from "splitting" to "kinking" of 
CFRP was discussed earlier [8, 9]. It has been shown 
that an external pressure suppresses "splitting", 
leading to a significant increase in strength, and to 
"kinking". Of course "splitting" and "kinking" are 
essentially different fracture mechanisms. Neverthe- 
less, the difference between these two fracture modes 
in the case of h!gh-strength fibres is less fundamental 
than between "kinking" stimulated by a split and 
"kinking" stimulated by a fibre fracture. "Splitting" is 
probably a fracture mode when the first longitudinal 
split does not lead to kinking because the concentra- 
tion of bend stresses in the split tip is not sufficiently 
high. "Splitting" is possible only in test methods which 
do not allow achievement of high strength values. 
Thus in the case of high-strength fibres, "kinking" and 
"splitting" are but two different stages of "splitting". 

Fig. 17 shows that CFRP compressive strength 
plotted against the square root of porosity (the data 
were taken from Hancox [4]) gives a straight line 

cy'~/cy'o = 1 - B V  1/2 (12) 

where B = 1.5 is an experimental constant, Vp is the 
pore volume content and Cyo is the strength at Vp = 0. 

This dependence coincides with that for G F R P  at 
"splitting" fracture mode [-10]. Owing to the non- 
linear dependence of ~'c on Vp, pores lead to very 
sharp reduction in compressive strength. For  example, 
1 and 4 vol % pores result in 15% and 30% strength 
decrease. 

One effect of pores on CFRP shear strength is 
described by the same square root function [42] 

rp/% = 1 - BVp 1/2 (13) 

where B = 1.65 and ro is the shear strength at Vp = 0. 
B coefficients values for compressive and shear 
strengths are very close (1.5 and 1.65). Thus the effect 
of pores on the compressive and shear strengths is the 
same. As a result, the direct proportionality between 
~'c and % (Equation 7) remains valid. Equation 13 may 
be explained if one supposes that pores are cylindrical 
in shape, have regular square arrangement and that the 
crack grows through the plane in which pore cross- 
section is maximum, Le. through the pore centre. The 
pore's part in this plane is equal to c~ = (4Vp/~)  1/2 

[42]. As the strength is proportional to the material 
cross-section (minus pore area) in the fracture plane, 
the following equation may be written 

"~r = 1 - 0~ = 1 - (4/rt) 1/2 Vlp/2 (14) 

Equation 14 agrees with experiment if 
B = ( 4 / V p ) l / 2 ~ l . 2 .  The experimental value of 
B (1.65) is quite close to the theoretical one (1.2). 

Thus there are four different failure modes of fibre- 
reinforced plastics under compression: (1) fibre buck- 
ling; (2) longitudinal splitting, (3) kinking due to fibre 
fracture, and (4) kinking due to composite splitting. 
Table IV summarizes the conditions under which dif- 
ferent modes of composite failure are realized, and 
describes the main features of these fracture modes. 

5. C o n c l u s i o n s  

1. New failure mode of CFRP has been found. In 
composites reinforced with high-strength fibres or in 
the presence of stress concentrators, a kink is initiated 
by longitudinal splitting. 

T A B L E  I V  F r a c t u r e  m o d e s  of  C F R P  in c o m p r e s s i o n  

1.2 

, 0 . 9  

0.6 

0.3 

o 0'.2 ' ' 014 Vp 1/2 

Figure 17 Compressive strength, or'c, plotted against square root of 
fibre content, V~/2. Data are taken from Hancox [4]. 

Kinking stimulated by Fibre 
buckling c 

Splitting" Fibre 
fracture b 

High temperature - - + 
Stress concentrator + - - 
Low-strength fibres - + - 
High-strength fibres + - - 

a Kink at 30~ ~ to the load axis; strength is proportional to shear 
strength; strength is lower in comparison with composite tensile 
strength. 
b Kink at 250-40 ~ to load axis; compressive and tensile strengths are 
equal. 
c "Symmetrical kink" perpendicular to fibre axis; strength is close to 
composite shear modulus. 
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2. In the case of low-strength fibres, kinking is 
a post-effect whereas the true failure cause is the com- 
pressive fracture of the fibres. 

3. The effect of stress concentrators upon unidirec- 
tional carbon fibre-reinforced plastic under compres- 
sive load may be described by the Griffith's criterion. 

4. At elevated temperatures the failure is a result of 
fibre buckling. The most characteristic feature of this 
fracture mode is the appearance of a fracture band 
("symmetrical kink") perpendicular to the direction of 
fibre orientation. 

5. The strand bending test gives a fibre-controlled 
upper limit of the composite compressive strength. 
The loop method may also be used to measure the 
compressive strength of the carbon fibre. 
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